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Abstract. The University of New Mexico {UNM) is currently designing
and building the CCD Transit Instrument IT (CTE-II)(McGraw et al.,
2006), a 1.8m transit survey telescope. The stationary CTI-II uses the
time delay and integrate readout mode for a mosaic of CCDs to generate
over 100 gigapixels per night which is required to be analyzed within a day
of observation. We are attempting to develop robust machine learning
techniques that use multiple scientific and engineering data streamns to
classify both objects within an image frame, and the image frame itself.
‘We propose the use of Bayesian belief nets as both classifiers and as tools
to integrate and explore the data streams. This initial report explores
the use of Bayesian networks as source/noise separators.

1l. Introduction

The goals of the CTI-II project revolve around ground-based millimagnitude
photometry and milliarcsecond astrometry sustained under a wide variety of
conditions. This involves the use of multiple engineering streams of data from
cloud monitors, various optical and structural monitoring instruments, as well
as LIDAR and cameras to measure atmospheric extinction(Dawsey et al., 2006).
We wish to create systems which can learn and adapt how the scientific data
streams are processed or interpreted based on the conditions presented by the
engineering data streams. We present models using Bayesian networks as the
integration tool to provide for source/noise separation under a wide variety of
seeing and sky-brightness conditions.

2. Bayesian networks

Bayesian networks are directed acyclic graph (DAG) representations across dis-
tributions of discrete or continuous random variables: X = {X;,X>, ..., Xy}
The resulting graph G is a unique resentation of a joint probability distribution
across the set of random variables. The topology of the graph gives the inde-
pendence relations of the variables according to the Markov condition: any node
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is conditionally independent of its nondescendents, given its parents. Both the
conditional probabilities and the topology of the net can be learned or deter-
mined by a domain expert. Given a set of values across some of the random
variables, the values of the other variables may be inferred using algorithms such
as Junction trees, Gibbs sampling, or Pearl’s algorithm (Heckerman, 1999).

Bayesian networks provide a natural way of reasoning in uncertainty, or
without access to the full set of variables. In a data set of random variables,
Bayesian net structure learning can indicate relationships between variables
(Pearl & Verma, 1991). Their ability to inference can provide deep insight
into how the network processes informatiomn.

3. Data sets and processing

We are currently modeling the sky using a source catalog generated by the
STUFF (Bertin & Fouqué, 2006) and SKYMAKER(Bertin, 2005) programs, with
SKYMAKER generating images using the parameters for the CTI-II telescope.
To generate a large dynamic range of seeing and background brightness under
controlled conditions, we use a grid of 25 frames where the seeing varies from
0.7 to 1.9 arcsec, and the background brightness varies from magnitude 22.5 to
magnitude 19.7.

Since each frame is synthetic, we assume it is the equivalent of a flat-fielded
and debiased telescope frame. The mean and standard deviation of the back-
ground are calculated from the frame, and the seeing is calculated from the
full-width at half-magnitude (FWHM) of the brightest object in the catalog.
All groups of contiguous pixels 2.50 above the background are located and put
into a list of possible sources. A size filter is then run across the possible source
list, filtering out all single-pixel sources. For the remaining sources, the centroid
is calculated and rounded to the nearest pixel. The values of the surrounding 25
pixels (a 5-by-5 window) including the centroid pixel are put in a 25 dimension
vector P. From P a normalized vector Py is calculated: Py = ]—%. The values

in Py are then binned to discrete values for use in the network. The values for
seeing and background are also binned, as is a value for the number of pixels in
the source. The network has nodes for each pixel value in Py as well as nodes
for the background and seeing. The final node represents the class of the source,
either noise, galaxy or star.

A number of different network topologies were tested, most using the Bayesian
network as a naive Bayesian (NB) classifier with the pixel nodes as the attributes
of the class node, conditioned on the seeing or the background brightness. Some
added in the size node as an additional attribute (see Figure 1, NB-BZP). In
naive Bayesian topologies the attributes are considered conditionally indepen-
dent of each other and no arcs are allowed between them in the graph. Other
topologies tested were tree-augmented naive Bayes (TANB), which allows arcs
and conditional dependence between the attributes, as well as topologies built
using a global Monte Carlo structure search algorithm across the whole data
set, where there are no restrictions on the arcs between variables other than the
DAG requirement{Cheng & Greiner, 1999; Friedman & Goldszmidt, 1996).
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Figure 1.  The best performing network, NB-BZP and the intrigning
MC-STRIP network, which uses only four variables.

4. Results

Table 1. Results from various network topologies.

Network False negative  False positive Unknown  Total error score

NB-BZP 17.1% 2.3% 0.5% 19.9%
NB-BP 17.8% 3.2% 0.5% 21.5%
MC-STRIP 15.8% 6.3% 0.0% 22.1%
MC-BSZP 15.4% 6.0% 3.1% 24.5%
NB-BSP 13.9% 7.0% 4.0% 24.9%
NB-SP 18.2% 7.0% 0.4% 25.6%
MC-BZP 19.3% 4.3% 2.5% 26.1%
TANB-BP 5.7% 6.0% 39.5% 51.2%

“Topologies: MC=Monte Carlo, NB=Naive Bayes, TANB=Tree Augmented
Naive Bayes, STRIP=4 node classifier

PNodes: B=background, S=seeing, Z=size, P=Pixels

All scores are a percentage of the entire test set, the unknown category rep-
resents cases where the network couldn’t determine a class due to lack of infor-
mation

5. Discussion

There are a number of suprising results from this research. Intially, we thought
that the seeing node would give good information to the network about point
spread function change. However for our synthetic data set, such information
was far less helpful than the measure of the background brightness. Since the
pixel vector is normalized to unit length, perhaps the brightness information is
needed to supplement the absolute measure lost in the normalization. If the
normalization was not done, perhaps the brightness variable information would
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not be needed. An even more interesting result is the score of the networlk
MC-STRIP in Table 1. This network only contains 4 nodes: class, brightness,
size and a node representing the value of a pixel next to the centroid pixel
(see Figure 1). This network is within 2% of the performance.of the two best
peforming networks NB-BZP(see Figure 1) and NB-BP, using only 4 variables
compared to their 29 and 28 variables respectively. It is important to point out
that the structure of MC-STRIP was learned, while NB-BZP and NB-BP are
both naive Bayes structures. As shown by the results of the TANB-BP (see
Table 1), the tree augmented naive Bayes structures suffer from a combinatorial
explosion, where somne nodes require too many training cases to be effective, and
thus the network bas a high number of ‘unknown’ errors in testing.

6. Future work

Our next step is increasing the size of our test data sets and moving from syn-
thetic to real data to get a wider variety of objects and conditions. We are also
exploring the use of self-organizing machines to replace simple histogramming in
discretizing the scientific and engineering data.(Young, et al. 2006). Since CTI-
II will operate in multiple bands and multiple nights, this raises the possibility of
networks with nodes representing data from previous nights and multiple wave-
lengths. Finally, we wish to model the integration of more information from the
engineering data of the telescope.
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